Java 线程状态
Java 线程共有 6 种状态,在任意时刻只能处于其中一种状态,随着代码的执行状态也会发生变化。
对于线性可分的数据集,感知机学习算法的原始形式是收敛的。也就是说,经过有限次的迭代,可以找到一个将数据集完全正确划分的分离超平面。
感知机算法是<统计学习方法>这本书讲的第一个机器学习算法,据说是最简单的机器学习算法。这里参考书中的例子,使用程序实现该算法,以便加深理解。
本节首先介绍函数间隔和几何间隔的概念,进而引出最优间隔分类器和拉格朗日对偶,最后介绍核函数和SMO algorithm
前面讲到的学习算法都是对 $p(y|x;\theta)$ 建模。例如逻辑回归算法对 $p(y|x;\theta)$ 建模得到 $h_\theta(x)=g(\theta^Tx)$ (其中g是sigmoid函数),直观上可以理解为:找到一条直线,将数据集划分为$y=1$和$y=0$两种,对新的输入,根据结果落在直线的哪一侧预测为对应的分类。这种叫做判别学习算法
前两节分别介绍了一个回归模型和一个分类模型,其中线性回归中假设概率分布为 $y|x;\theta \sim N(\mu, \sigma^2)$,二分类中假设概率分布为 $y|x;\theta \sim Bernoulli(\phi)$。这两种模型都是广义线性模型(Generalized Linear Models)的特殊情况。
二分类(binary classification)是最简单的一种分类问题,$y$ 的取值只有两种:0和1,对应的样本分别称为负样本和正样本。逻辑回归(Logistic regression)可用于处理二分类问题。
俗话说好记性不如烂笔头,看过的东西很快就会忘了,记录下来一方面会增强记忆,另一方面也方便查阅。这里根据css229视频和讲义简单做下笔记。